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ABSTRACT

Stem cell-based therapies for neurodegenerative diseases aim at halting clinical deterioration by
regeneration and by providing local support for damaged tissue. Mesenchymal stem cells (MSCs)
hold great potential for cell therapy as they can be efficiently derived from adult tissue, ex vivo
expanded in culture and safely transplanted autologously. MSCs were also shown to be able to differ-
entiate toward neural fates and to secrete a broad range of factors able to promote nervous tissue
maintenance and repair. Moreover, upon transplantation, MSCs were shown capable of homing
toward lesioned areas, implying their potential use as vehicles for therapeutic agents administration.
Indeed, various advantageous effects were reported following human MSCs transplantation into
rodent models of neurodegenerative diseases, such as neurotrophic factor-mediated protection,
enhanced neurogenesis, modulation of inflammation, and abnormal protein aggregate clearance. Per
journal style, most nonstandard abbreviations must be used at least two times in the abstract to be
retained; NTF was used once and thus has been deleted. Recent studies have also used ex vivo
manipulation for enhanced expression of potentially favorable factors, by so exploiting the homing
capacity of MSCs for effective expression at the lesion site. Here, we will summarize current advance-
ments in MSCs-based therapies for neurodegenerative diseases. We will examine the roles of central
mechanisms suggested to mediate the beneficial effects of MSCs-based therapy and consider the
augmentation of these mechanisms for superior clinical outcomes in rodent models of neurodegener-
ation as well as in clinical trials. STEM CELLS 2017; 00:000-000

SIGNIFICANCE STATEMENT

Mesenchymal stem cells (MSCs) hold great potential as source for cell-based therapy for neuro-
degenerative diseases. In this review, we summarize recent progress using human MSC trans-
plantation into rodent models of neurodegeneration. We examine the molecular mechanisms
mediating disease amelioration through this approach and emphasize the potential of ex vivo
manipulation for these cells before transplantation.

shown to be involved in the etiology of these dis-

INTRODUCTION

Neurodegenerative diseases involve progressive
decline in neuronal function, brain atrophy, and
often involve abnormal deposition of proteins.
Although various neurodegenerative diseases,
such as Alzheimer’s disease (AD), Parkinson’s
disease (PD), Huntington’s disease (HD),
amyotrophic lateral sclerosis (ALS), and multiple
system atrophy (MSA) occur in different brain
regions and display different etiology, cumula-
tive data suggest common cellular and molecu-
lar mechanisms.

Although there are immense efforts for the
development of therapies for neurodegenerative
diseases throughout the last several decades, effec-
tive therapeutic agents are still of need. This lack
may result from several challenges: First, although
multiple cellular and molecular mechanisms were
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eases, the cause of neuronal death still remains
obscure, and no single molecular pathway was
shown able to modulate disease progression. Sec-
ond, for most of these diseases, early diagnosis is
impeded due to the absence of efficient bio-
markers. Third, progressed neurodegeneration
often involves secondary effects such as chronic
inflammation, requiring adjustment of treatment.
Finally, drugs administered into the central nervous
system (CNS) should be able to cross the brain—
blood barrier (BBB), as well as to target specific cell
types within different CNS regions, requiring
efficient vectors able to carry therapeutic agents
toward their target sites.

Mesenchymal stem cells (MSCs) are adult mul-
tipotent progenitors derived from various adult
tissues and are capable of self-renewal in vitro [1].
MSCs are defined by their spindle-shaped
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Figure 1.

Human mesenchymal stem cell (hMSC)-based therapy for neurodegeneration. Shown is a scheme describing major stages in

hMSCs-based therapy: derivation from adult tissue, ex vivo expansion and manipulation, administration into the spinal canal, and migra-
tion toward lesioned area. Enlarged areas show the molecular mechanisms shown to contribute to amelioration of neurodegenerative

diseases upon MSCs transplantation.

morphology, their ability to adhere to tissue culture plastic, and
their unique expression of cluster of differentiation cell surface
molecules [2]. Upon growth in culture, MSCs are able to greatly
expand while retaining their multipotent potential. This allows the
generation of high cell quantities, setting these cells as highly effi-
cient source for cell-based therapy. Also, MSCs were safely used for
autologous transplantation, and exhibited no toxicity or tumorige-
nicity following transplantation into rodents or human patients [3,
4]. Moreover, upon transplantation, MSCs possess the capability to
migrate toward neural lesions, presumably due to attraction by
chemokines [5, 6]. Finally, paracrine secretion from these cells offer
broad clinical potential by regulating immunomodulation, angio-
genesis, apoptosis, oxidative stress, cell-differentiation, extra-cellu-
lar matrix composition, and more (reviewed in ref. 7).

Multiple reports over the last decade showed improve-
ment in various models of neurodegenerative diseases or
acute brain insults following MSCs transplantation in multiple
rodent models. MSCs transplantation often improved survival
rates, declined pathology, and rescued cognitive function
decline. However, the exact mechanism by which MSCs exert
their function remains debatable, as several mechanisms have
been offered, such as neuroprotection by secretion of neuro-
trophic factors (NTFs), induction of neurogenesis, modulation
of inflammation, and prevention of misfolded protein aggrega-
tion (illustrated in Fig. 1). As the majority of these diseases
display complex etiology, it seems that multiple beneficial
roles of MSCs are able to target different aspects of diseases.
However, understanding the molecular mechanisms by which
these cells exert their function could facilitate the generation
of advanced MSCs-based therapies for neurodegeneration.

In this review, we will present the advances in human
MSCs (hMSCs)-based therapies in rodent models of neurode-
generative diseases such as AD, PD, ALS, and MSA as well as
in acute models of stroke. We will also review outcomes from
human clinical trials using this therapeutic approach and will
discuss the limitations that hamper the therapeutic potential
of these cells. We will focus on the different mechanisms
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enhanced following treatment with these cells (as summarized
in Table 1) and will describe the methods used to improve
therapeutic efficacy of the hMSCs (as summarized in Table 2).

INDUCTION OF NEURONAL REGENERATION

Neurodegeneration is mainly characterized by progressive
neuronal loss. However, various neurodegenerative diseases
exhibit unique neuronal pathologies. PD involves the loss of
dopaminergic neurons in the Substantia Nigra (SN). ALS
involves the degeneration of motor neurons (MNs) in the
brainstem and spinal cord. AD entails global neuronal loss in
the cerebral cortex and hippocampus, and HD is characterized
by degeneration of projection neurons in the dorsal striatum
[8]. As the molecular mechanisms driving neuronal pathology
in these diseases remains elusive, functional recovery by
regeneration of damaged tissue is regarded a major therapy
strategy.

Neuronal Differentiation of MSCs

The discovery that MSCs derived from both mouse and
human origins can be manipulated to differentiate into func-
tional neurons [9-11] encouraged the use of MSCs-derived
neuronal cell types for the replacement of damaged neural
tissue. Emerging protocols have used specific culture condi-
tions for ex vivo differentiation of human MSCs into
dopamine-secreting [12, 13] and acetylcholine (Ach)-secreting
[14, 15] neuronal-like cells. Alternatively, superior similarity to
original neuronal subtypes was reported through the genetic
modification-mediated transdifferentiation of human bone
marrow-derived MSCs (hBM-MSCs) using ectopic expression
of neuronal subtype-specific transcription factors [16, 17].
Although few studies have shown functional recovery in brain
injury upon transplantation of MSCs-derived neuronal cells
into murine brains [17-20], it is not clear whether the
observed recovery was indeed due to functional integration
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4 Mesenchymal Stem Cells in Neurodegenerative Diseases

of MSCs-derived neuronal cells into excising neuronal net-
works. Moreover, the ability of MSCs to differentiate into fully
functional neurons was not proven, as their transdifferentia-
tion capacity and electrophysiological functionality remains
under debate (reviewed in refs. 21, 22). These challenges, as
well as the difficulty in establishing sufficient amount of cells
for transplantation, discouraged further advancement of this
strategy.

Clinical improvement

Reduced disease severity

Induction of Endogenous Neurogenesis

An alternative approach for functional regeneration after neu-
ronal loss is to encourage endogenous neural stem cells in
the brain to generate the appropriate neurons. In mice, sub-
ventricular zone (SVZ) cell proliferation and neuronal differen-
tiation are enhanced following stroke, providing evidence that
the adult brain has the capacity to replace damaged cells
using endogenous precursors [23]. Impaired neurogenesis, on
the other hand, was associated with several neurodegenera-
tive diseases [24], suggesting that inducing neurogenesis can
be used as a therapy. Identification of factors that enhance
endogenous neurogenesis in acute insult or chronic neurode-
generation was suggested as an effective therapeutic approach.

NTFs are secreted proteins that regulate multiple aspects
of neural cell functions and are widely known to play central
roles during brain development, homeostasis, and neurode-
generation [25]. In particular, multiple neurotrophic factors
(NTFs) have been implicated in induction of neurogenesis in
the adult SVZ. Brain-derived NTF (BDNF) and vascular endo-
thelial growth factor (VEGF) administration into the lateral
ventricles of adult rats was shown to increase the generation
of new neurons [26]. The enhancement of neurogenesis by
enriched environment was shown to be dependent on BDNF
[27] and VEGF was shown to mediate exercise-induced neuro-
genesis [28]. Also glial cell line-derived NTF (GDNF), fibroblast
growth factor 2 (FGF2), and neurotrophin-3 (NT-3) were shown
to have roles in enhancing adult neurogenesis [29, 30].

Munoz and colleagues has shown that (hBM-MSCs) injected
into the dentate gyrus of healthy mice were able to promote
proliferation and differentiation of neural stem cells [31]. This
effect was attributed to the elevated secretion of NTFs such as
nerve growth factor (NGF), VEGF, cilliary NTF (CNTF) and FGF2
from transplanted cells. We showed that hBM-MSCs injected
into the SVZ and sub-granular zone (SGZ) of healthy mice
housed in enriched cages, promoted neurogenesis in the SVZ
but not the SGZ associated with elevated BDNF secretion [32].
Notably, human nuclei staining analysis confirmed that neural
progeny was derived from endogenous progenitors rather than
from the transplanted cells.

The induction of neurogenesis by hMSCs administration was
shown beneficial in several models of neurological diseases. We
have recently shown a beneficial effect of hBM-MSCs in a BTBR
mouse model of autism spectrum disorder. hBM-MSCs transplan-
tation into these mice, who typically show reduced hippocampal
neurogenesis and BDNF secretion, resulted in elevation of these
properties along with improved cognitive functions [33].
Dramatic improvement in cognitive functions and social behavior
were demonstrated 3 weeks following transplantation, sugges-
ting the role of NTFs secretion-mediated induced neurogenesis
in this model. Induced neurogenesis following hBM-MSCs trans-
plantation was also reported in a 6-hydroxydopamine (6-OHDA)
mouse model of PD, where grafted cells were shown to secrete

Sustained survival of motor neurons
Improved motor functions
Reduced stereotipical behavior

Enhanced vascular congestion
Reduced cognitive rigidity

Enhanced neuronal survival

Amelioration of axonal loss
Improved social behavior

Suggested mechanism
Decreased immune cell infiltration

HLA-G mediated
of microglia activation

Reduced astrogliosis and microglia

activation

Reduced neutrophil infiltration modulation
NTF secretion

BBB integrity maintenance
Enhanced endogenous neurogenesis

Immunomodulation

Model animal

EAE rats
SOD1 female mice

LPS induced rats

BLBP mice

Cell source
Adipose
Bone marrow
Bone marrow
Bone marrow

Authors
[76]
[70]
[60]
[33]

Abbreviations: BBB, brain-blood barrier; EAE, experimental autoimmune encephalomyelitis; HLA-G, human leukocyte antigen G; 6-OHDA, 6-hydroxydopamine; IL-4, interleukin 4; LPS, lipopolysaccharide;

MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MSC, mesenchymal stem cells; NFkB, nuclear factor kappa-light-chain-enhancer of activated B cells; NGF, nerve growth factor; NSS, neurological

Severity Score; NTF, neurotrophic factors; sICAM-1, soluble intracellular adhesion molecule-1; TSG6, tumor necrosis factor-inducible gene 6.

Table 1. Continued
Inflammation

ALS
ASD

n
=
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BDNF 23 days after transplantation [34]. In a rat model of cere-
bral ischemia, we also observed enhanced neurogenesis that was
associated with induced levels of BDNF, NT-3, and VEGF were
reported following transplantation, suggesting that neurogenesis
was mediated by NTFs secretion [35].

Park et al. showed that hBM-MSCs administration enhanced
the expression of epidermal growth factor receptor (EGFR) and
enhanced neurogenesis in the SVZ and the SN in an 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD. As EGFR
is known to enhance neural progenitor cell (NPC) proliferation,
the authors suggested that the neurogenic activity of hBM-
MSCs was indeed mediated through EGFR signaling [36].

WNT signaling is known to be involved in proliferation
capacity of NPCs. Beta-amyloid (AB) exposure of murine NPCs
was shown to decrease their proliferation capacity as well as
the expression level of the WNT components B-catenin and
NGN1. Coculture of NPCs with hMSCs significantly rescued the
expression of these genes and enhanced proliferation and neu-
ronal differentiation. Importantly, hMSCs-mediated enhance-
ment of neurogenesis was dependant on WNT signaling
activation. hMSCs transplantation into AR-treated mice showed
enhanced differentiation of NPCs in the hippocampus into
mature neurons [37].

Together, these findings show that paracrine secretion from
hMSCs results with enhanced neurogenic capacity and subse-
quent functional improvement. However, we cannot exclude
the possibility of direct effect of NTF and other factors on
various cellular processes such as homeostasis, reduction in
oxidative stress, modulation of inflammation, and neuronal
survival. As the modulation of neurogenesis is widely accepted
as a key mechanism regulating neurodegeneration, the induction
of neurogenesis by cell therapy using hMSCs holds great potential
for future therapy (reviewed in ref. 25).

ENHANCED NTFS SECRETION

In addition to their role in promoting neurogenesis, ectopic expres-
sion of NTFs is known to improve neuronal survival following acute
and chronic brain damage, providing a potential strategy for the
treatment of various neurodegenerative diseases [38—40]. Func-
tional improvement in murine models of neurodegeneration fol-
lowing hMSCs transplantation is frequently attributed to enhanced
levels of NTFs in the brain, providing neuroprotection, reduction in
oxidative stress, induced neurogenesis, and modulation of the
inflammatory response [32—36, 41-45].hBM-MSCs were shown to
express neural genes and were suggested to be predisposed to dif-
ferentiate into neural cell fates [46]. We sought to harness this
potential to generate hBM-MSCs-derived, NTFs secreting,
astrocytic-like cells. We developed a novel protocol for ex vivo dif-
ferentiation to astrocytic-like cells termed NTFs-secreting MSCs
(MSC-NTFs). MSC-NTFs show elevated secretion of BDNF, GDNF,
and insulin-like growth factor 1 as well as elevated expression
of astrocytic markers such as glial fibrillary acidic protein and
glutamine synthetase.

MSC-NTFs were shown to evoke improved clinical outcomes
compared with naive hBM-MSCs in several rodent models of
neurodegeneration. Upon MSC-NTFs transplantation into the
striatum of 6-OHDA model of PD, rats show improved behavior
in the amphetamine-induced rotations test, higher preservation
of the tyrosine-hydroxylase-positive area in the striatum

www.StemCells.com

and reduced dopamine depletion when compared with naive
hBM-MSCs [47]. Notably, conditioned media from MSC-NTFs
was shown to protect neuroblastoma cell line against 6-OHDA
neurotoxicity. This NTF-induced protection was also shown in a
quinolinic acid model of neurotoxicity [48].

Conditioned media from MSC-NTFs was also shown to pro-
mote neuronal protection against oxidative stress and to inhibit
proliferation of immune cells in response to multiple sclerosis
(MS) related antigens [49]. Additionally, MSC-NTFs were shown
to promote survival of retinal ganglion cells after optic nerve
injury [50], to improve motor functions and to inhibit neuro-
muscular junction degeneration in a rat model of sciatic nerve
injury [51], suggesting an enhanced neuroprotective effect.

The neuroprotective and neurogenic capacity of MSC-NTFs
in these models, has encouraged the use of MSC-NTFs for
autologous transplantation in patients with ALS. To date, a
phase I/1l and a phase 2a clinical trials for the treatment of ALS
patients with MSC-NTFs was conducted by Brainstorm® Cell
Therapeutics, and succeeded in meeting safety and efficacy
criteria (See MSCs Therapy in Human Clinical Trials section).

Alternative ex vivo approach uses genetic manipulation of
isolated hBM-MSCs to enhance the expression of NTFs. Using
this strategy, hBM-MSCs over-expressing GDNF were shown to
promote recovery in a 6-OHDA rat model of PD, resulting in
reduction of amphetamine-induced rotations and rejuvenation
of dopamine fibers [52]. Transplantation of hBM-MSCs over-
expressing GDNF and VEGF were also used in a mutant
Superoxide dismutase 1 (SOD1) rat model of ALS and showed
improved neuro-muscular junction innervation and improved
MN survival [53]. Similarly, transplantation of hBM-MSCs over-
expressing BDNF promoted neurogenesis, improved behavioral
scores, and increased lifespan in mice models of HD [54].

In summary, these lines of research validate the important
role of NTFs in restoring homeostasis and halting degenera-
tion, but also highlight the capability of hMSCs to serve as
vectors for ectopic expression of beneficial factors through
paracrine secretion as a therapeutic approach for nervous sys-
tem disorders.

IMMUNOMODULATION AND NEUROINFLAMMATION

Neuroinflammation refers to a variety of chronic, proinflam-
matory, immune system-mediated processes, mainly associ-
ated with neurodegenerative diseases. Cumulative evidence
suggests that inflammation plays a major role in the progres-
sion of several neurodegenerative diseases. Post-mortem AD
brains exhibit activated microglia and astrocytes as well as
positive staining for multiple anti-inflammatory chemokines
and cytokines [55]. PD entails enhanced microglia activation,
astrogliosis, and lymphocyte infiltration [55] as well as
increased levels of proinflammatory cytokines in the blood
and cerebrospinal fluid (CSF) [56]. Also in ALS, accumulation
of activated microglia and macrophages was shown next to
degenerating areas, along with multiple proinflammatory com-
pounds and upregulation of the proinflammatory cytochrome-
C oxidases 1 and 2 (COX-1 and COX-2) [57]. Moreover, many
inflammation-related compounds have detrimental roles on
neurogenesis, consequently hampering endogenous tissue
repair mechanisms [58]. Therefore, the modulation of the
immune response toward an anti-inflammatory state emerges

©AlphaMed Press 2017
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as a potential disease-modifying therapeutic strategy for neu-
rodegeneration [59].

The inflammatory response in the CNS, unlike the rest of
the body, is primarily mediated by the activation of microglia
cells, specialized macrophages of the nervous system. Under
physiological conditions, deactivated microglia support tissue
homeostasis through production of neurotrophic and anti-
inflammatory factors [55]. Upon activation, following exposure
to pathogen or brain injury, activated microglia migrate along
a chemotactic gradient, recruit circulating immune cells that
infiltrate into the CNS through the BBB. Microglia cells are
also able to perform phagocytosis and mediate neuroinflam-
mation through secretion of proinflammatory cytokines, che-
mokines, and reactive oxygen species [58].

Ultimately, enhanced proinflammatory activation of micro-
glia cells can result in chronic inflammation and accelerated
neuronal death through oxidative stress and apoptosis. Sev-
eral studies suggested that hMSCs hold various immunomodu-
latory roles, mainly through the manipulation of microglia-
mediated neuroinflammation. hBM-MSCs transplantation into
SOD1 female mice decreased microglial activation and astro-
gliosis which was associated with improved behavioral score
[60]. In an acute model of AD, human umbilical cord blood-
derived MSCs (hUCB-MSCs) also reduced the levels of micro-
glial and astrocytic activation as well as apoptosis [61]. Fol-
lowing work showed that familial AD model APP/PS1 mice
exhibit substantially increased levels of the proinflammatory
cytokines tumor necrosis factor (TNF)-a and interleukin (IL)-
1B when compared with wild-type mice and that the expres-
sion of these factors is significantly reduced following hUCB-
MSCs transplantation. Alternatively, the expression of the
anti-inflammatory markers IL-4, AMCase, YM-1, and Arg-1 was
elevated following transplantation indicating a switch in
microglial activation from a proinflammatory state to an anti-
inflammatory [62].

It was demonstrated that hBM-MSCs promote secretion
of IL-4 from microglia cells and stimulated «-synuclein clear-
ance in a PD mouse model [63]. A 1-year follow-up clinical
trial using these cell for the treatment of MSA revealed a
higher IL-4 expression and a reduction in the a-synuclein lev-
els in the CSF of hBM-MSCs-treated patients when compared
with placebo group [63, 64] (See MSCs Therapy in Human
Clinical ~ Trials section). Importantly, hBM-MSCs-treated
patients showed a lesser decrease in cerebral glucose metab-
olism and grey matter density as well as decreased deteriora-
tion of cognition when compared with placebo group. Finally,
recent in vitro and in vivo analyses have indicated the roles
of other molecular pathways, such as nuclear factor kappa-
light-chain-enhancer of activated B cells signaling [65] and
sphingosine-1-phosphate signaling [66] in hMSCs mediated of
modulation of inflammation.

hMSCs were also shown to maintain BBB integrity. Follow-
ing neuroinflammation, the BBB is disrupted in a process
involving morphogenic and paracrine changes in astrocytes
and endothelial cells, allowing increased penetrability and
neutrophil infiltration [67-69]. Park et al. showed that hBM-
MSCs were able to restore BBB integrity in
lipopolysaccharide-induced rats, resulting in reduced neutro-
phil infiltration and enhanced neuronal survival. The authors
suggested that improved BBB integrity was due to morpho-
genic changes in astrocytes and endothelial cells as well as
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anti-inflammatory modulation of microglia [70]. Similarly,
Chung et al. reported that human adipose derived MSCs (hA-
MSCs) transplantation following transient global cerebral
ischemia in rats, minimized BBB disruption and neutrophil
infiltration induced by ischemia and improved endothelial vas-
culture [71]. Together, these reports demonstrate another
therapeutic advance for hMSCs following acute injury or
chronic inflammation.

Immunomodulation and MS

MS is a chronic, autoimmune, and neurodegenerative disease
of the CNS, in which immune cells, predominantly auto-
reactive CD4+ T-helper cells, infiltrate into the CNS and pro-
mote an inflammatory response, resulting in myelin injury and
axonal loss [72]. Similarly to microglia directed therapy, cur-
rent treatment strategies for MS commonly aim at modulating
the immune response, through a shift from a proinflammatory
response, mediated by cytokines secreted by T-helper 1 (Th1)
cells, to an anti-inflammatory response, mediated by cytokines
secreted by T-helper 2 (Th2) cells [72].

hMSCs were widely evaluated for the treatment of MS,
through transplantation into the experimental autoimmune
encephalomyelitis (EAE) mice model of MS. Following intrave-
nous transplantation into rodents, hMSCs migrate from the
blood stream into the CNS and localize to white matter demy-
elination sites, and to peripheral lymph organs and conse-
quently induce EAE amelioration [41, 73-75]. Repeated
reports ascribed this amelioration to a modulation of the
immune response. Using hBM-MSCs, Bai et al. showed a
decrease in leukocyte infiltration into the CNS and enhanced
a Th2 cytokine profile, but also enhanced oligodendrogenesis,
suggesting that hBM-MSCs affect immunomodulation but also
enhanced neuronal repair [73]. Similar results showing a Th2
cytokine shift and enhanced oligodendrogenesis were
reported using hA-MSCs [74, 76] and using human decidua-
derived MSCs (hD-MSCs) [77]. hA-MSCs were also shown to
express the immunosuppressive gene human leukocyte anti-
gen G (HLA-G) [76] and to induce the secretion of the anti-
inflammatory protein TNF-a-stimulated gene/protein 6 follow-
ing culture with inflammatory cytokines [78]. Payne et al.
tested the effect of hA-MSCs ex vivo modified to over-express
the anti-inflammatory ILs-4 and —10 in EAE mice. In both
cases, they observed disease attenuation and enhanced Th2
anti-inflammatory response, confirming the significance of
immunomodulation in this model [79, 80].

HBM-MSCs-mediated improvement in MS was also attrib-
uted to NTFs secretion. Zhang et al. showed that EAE clinical
score is correlated with decreased NGF expression, both res-
cued upon hBM-MSCs transplantation [41]. We previously
showed that MSC-NTFs (discussed earlier) injected intracere-
broventricularly (ICV) into EAE mice were able to ameliorate
motor functions and suppress EAE in mice to a greater extent
than naive hBM-MSCs, suggesting neurotrophic-mediated dis-
ease amelioration [49].

Finally, hBM-MSCs differentiated into neural progenitor
fate shown both enhanced immune-regulatory properties and
NTFs secretion [81]. Multiple intrathecal injections of these
cells into EAE mice reduced immune cell infiltration into the
CNS and enhanced endogenous neural progenitor proliferation
[81] and clinical trials using these cells are ongoing (Clinical-
Trials.gov identifier: NCT01933802).
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PROTEIN AGGREGATE CLEARANCE

The abnormal aggregation of proteins and formation of inclu-
sion bodies is a major hallmark of neurodegenerative diseases
[82], and protein aggregation is known to be a major factor
in neurodegeneration onset. PD involves intraneuronal forma-
tion of inclusions in the SN termed Lewy bodies, mostly com-
posed of the a-synuclein protein and triplication of the SNCA
gene encoding a-synuclein was found to cause PD [83]. HD is
characterized by expansion of CAG repeats in the N-terminus
of the huntingtin gene, resulting in protein polyglutamination,
leading to formation of fibers with [3-sheet structure and
aggregation. It was shown that the number of CAG repeats
within the Huntingtin gene linearly correlates with early HD
onset [84]. AD is associated with both extracellular amyloid
plagues mostly containing the AR peptide, and intracellular
neurofibrillary tangles containing the phosphorylated tau pro-
tein. According to the amyloid cascade hypothesis [85], the
formation of amyloid plaques is essential for AD pathology.
ALS involves the intraneuronal formation of inclusions, mostly
in spinal MNs, containing TAR DNA-binding protein 43
(TDP-43), FUS and SOD1 proteins. Moreover, various prion dis-
eases such as Creutzfeldt-Jakob disease and Gerstmann—
Straussler-Scheinker disease involve both intra- and extra-
cellular deposition of abnormally folded prion proteins. There-
fore, reducing abnormal protein aggregates by preventing
aggregation as well as by imposed clearance of aggregating
proteins is a main strategy for neurodegenerative disease
therapy.

Microglia and Proteolytic Enzyme Secretion

As the main constituent of extracellular plaques in AD, AR lev-
els are thought to dictate AD progression. Enhanced expres-
sion of AB-degrading enzymes such as insulin-degrading
enzyme or neprilysin in AD mice models resulted in reduced
AR burden and premature lethality rescue [86]. Moreover, the
secretion of AB-degrading enzymes from microglia was shown
to be affected by age [87] and regulated by ApoE [88], the
two major risk factors for AD. Recent coculture experiments
shown that soluble intracellular adhesion molecule-1 secreted
by hUCB-MSCs induced the secretion of neprilysin from
microglia [89]. Transplantation of these cells into APP/PS1
mice also shown induced neprilysin expression, alongside with
reduced AR plagues in the hippocampus, demonstrating a
role for hMSCs in enhancing the cells endogenous proteolytic
machinery [89]. A phase I/Il clinical trial based on these
results is currently recruiting patients (ClinicalTrials.gov identi-
fier: NCT02054208).

Autophagy

Autophagy is a cellular pathway involved in protein and
organelle degradation through formation of autophagic
vacuoles that fuse with lysosomes [90]. Expectedly, autophagy
was shown to play a key role in aggregate clearance in several
neurodegenerative disease models [91]. Knock-out of the
essential autophagy gene Atg7 in mice was reported to cause
accumulation of poly-ubiquitinated proteins, substantial neu-
ronal loss and behavioral defects [92]. Shin et al. reported
that ICV administration of hBM-MSCs into AB-inoculated mice
increased the survival of hippocampal neurons and reduced
the levels of AB. AR clearance was attributed to the recovery
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of the cells inherent clearance machinery through the
autophagy-lysosomal pathway [93], as seen by formation of
autophagic vacuoles and induction of the expression of the
autophagy initiator BECN1. This group has also shown that
hBM-MSCs-mediated activation of autophagy improved viabil-
ity and reduced a-synuclein accumulation in the midbrains of
MPTP-treated mouse model of PD [94]. Together, these find-
ings indicate that hBM-MSCs are able to induce protein aggre-
gate clearance through an increase in autophagy.

MSCs THERAPY IN HUMAN CLINICAL TRIALS

Along with the advancements in murine models of neurode-
generation, hMSCs are widely examined as therapeutic agents
in human clinical trials aiming to ameliorate neurodegenera-
tion and acute brain injury as well as various other patholo-
gies. To date, over 700 clinical trials using hMSCs are listed in
clinicaltrials.gov, out of which more than 40 have reached
phase Ill. hMSCs were reported safe for administration to the
CNS through intravenous and intrathecal transplantation and
were studied in the context of multiple neurodegenerative
diseases and acute brain injuries. In this section, we will
review current results using hMSCs-based therapy in human
clinical trials (summarized in Table 3).

Substantial progress have been done using hMSCs for the
treatment of MS. Li et al. demonstrated that hUCB-MSCs
derived from healthy donors and administered into MS
patients were able to ameliorate disease symptoms and
reduce relapse occurrence. The immunomodulatory beneficial
outcome was evident as a shift in peripheral blood cytokine
expression toward a Th2 response [95]. Immunomodulation
was also recorded following hBM-MSCs transplantation in MS
and ALS patients [96]. Peripheral blood monocyte analysis 24
hours after transplantation revealed an increase in the pro-
portion of immunosuppressive CD4+ CD25+ regulatory T
cells and a decrease in the proportion of proinflammatory
myeloid dendritic cells. Expanded disability status scale scores
of hBM-MSCs-treated MS patients showed functional
improvement 6 months following transplantation, while ALS
functional rating scale (ALS-FRS) scores in ALS patients remained
stable throughout this period, indicating immunomodulatory-
mediated clinical potential for hBM-MSCs. A work by Mohajeri
et al. has also reported a similar immunomodulatory effect fol-
lowing autologous transplantation of hBM-MSCs in six MS
patients [97]. Six months following transplantation, all patients
demonstrated clinical stability. They have also demonstrated a
significant upregulation in the expression of the transcription fac-
tor FoxP3 in blood mononuclear cells. As Foxp3 is known as a
marker of immunosuppressive CD4+ CD25+ regulatory T cells,
this study further indicate the anti-inflammatory role of hBM-
MSCs [98]. In another clinical study, Connick et al. administered
autologous hBM-MSCs intravenously to 10 patients with second-
ary progressive MS with clinical evidence of optic nerve involve-
ment. After hBM-MSCs treatments, patients showed improved
visual acuity and an increase in optic nerve area, providing evi-
dence that hBM-MSCs treatment can affect disease score in pro-
gressive MS [99].

hBM-MSCs were also beneficial following autologous injec-
tion into ALS patients. Mazzini et al. autologously adminis-
tered hMSCs into the spinal cord in seven ALS patients and
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reported a significant slowing down in the force vital capacity
(FVC) scale in four of the patients [100]. Similar improvement
in clinical score was also reported by Oh et al. following
autologous hBM-MSCs transplantation [101]. A parallel work
by this group has also analyzed the relationship between the
expression of factors induced by hBM-MSCs and the patient’s
responsiveness to therapy [102]. They have shown that
enhanced secretion of trophic factors such as VEGF, angioge-
nin, and transforming growth factor (3 were associated with
responsiveness to treatment, providing evidence to the contri-
bution of these factors.

As mentioned earlier, MSC-NTFs developed in our labora-
tory have also shown beneficial evidence in ALS patients. In a
phase I/Il study performed by Brainstorm Cell Therapeutics,
87% of the patients treated intrathecally with MSC-NTFs
(NurOwn®) showed at least 25% improvement in the slope of
disease progression at 6 months after treatment, as indicated
by the ALS-FRS and the FVC measurements [103].

Recently, Brainstorm Cell Therapeutics announced findings
from a randomized, double blind, placebo-controlled phase Il study
showing that autologous MSC-NTFs treatment in 36 patients indeed
led to clinically meaningful benefit (http://irbrainstorm-cell.com/
phoenix.zhtm|?c=142287&p=irol-newsArticle&ID=2186054).
Patients treated with NurOwn® showed enhanced levels of NTFs
in the CSF and decreased inflammatory markers 2 weeks
after intrathecal transplantation. Importantly, these patients exhib-
ited slower disease progression when compared with the placebo
group, as measured by the ALS-FRS scale. As announced by the
company, a phase lll clinical trial is expected to begin in 2017.

Several clinical trials have also demonstrated the potential
of hMSCs for the treatment of patients following ischemic
stroke. Patients subjected to autologous hBM-MSCs transplan-
tation 6 weeks following infarction within the middle cerebral
artery territory, showed decreased brain atrophy and
improved daily performance, as measured by the Barthel scale
[3]. A follow-up study by this group has reported that hBM-
MSCs treated group had lower mortality rate and tended
toward improved clinical outcome 5 years after transplanta-
tion [104]. In a different trial, autologous hBM-MSCs trans-
plantation following stroke was reported to reduce infarct size
by 20% a week following transplantation [105].

Finally, autologous transplantation of hBM-MSCs was also
performed in patients with synucleopathy. Venkataramana
et al. reported that three of the seven PD patients treated by
stereotactic injection of these cells into the sublateral ventricu-
lar zone (VZ) have shown improvement in their Unified Parkin-
son’s Disease Rating Scale score [106]. Lee et al. have shown
that intra-arterial and intravenous administration of hBM-MSCs
to MSA patients resulted in a lesser increase in the severity of
their neurological deficits when compared with placebo group,
throughout a period of more than 3 years [64].

Although future research will have to determine the efficacy
of these treatments in larger cohorts, these clinical results col-
lectively demonstrate the beneficial potential of hMSCs-based
therapy in patients with neurodegeneration.

EFFICACY AND LIMITATIONS OF HMSCs-BASED THERAPY

hMSCs are regarded as efficient cell source for therapy, as
they can be safely harvested from and transplanted into
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donors or patients, have no major ethical concerns, have low
immunogenicity and possess a wide therapeutic potential. The
results from both preclinical and clinical trials reviewed here
indicate the potential of hMSC-based treatment in meeting
several key aspects of neurodegeneration, such as neuropro-
tection, immunomodulation, and protein aggregate clearance.
However, meaningful improvement of neurodegeneration
would probably require a highly efficient and specific treat-
ment throughout a long period of time.

As hMSCs can be harvested from various tissues, one
measure for enhancing the efficiency of hMSCs-based therapy
is by revealing the clinical relevance of hMSCs derived from
various tissues. hMSCs derived from bone marrow and adi-
pose show similar differentiation potential and expression of
common hMSCs surface markers such as CD34, CD44, CD45,
CD105, CD29, and CD90 [107-109]. However, recent compara-
tive analyses have indicated variable protein secretion pat-
terns [110, 111] and identified additional markers that
differentially express in hMSCs derived from various origins
(reviewed in ref. 112). Notably, hA-MSCs were reported to
have a higher proliferative capacity over hBM-MSCs and to
express a wider range of chemokine receptors, which are con-
sidered important for their homing capacity [107-119, 113].
hA-MSCs were also previously reported to possess a higher
immunomodulatory potential [108], while a recent report
using hA-MSCs and hBM-MSCs from the same donor has
reported no major differences in their aspect [114].

Notably, recent publications comparing the administration
of hMSCs derived from bone marrow or adipose tissue in
mice models of hind limb ischemia have shown mixed results
in terms of which source is superior [109, 115]. In a murine
model of Crohn’s disease, hA-MSCs were reported superior
over hBM-MSCs in promoting an anti-inflammatory response
[116]. However, there is lack of direct evidence for superiority
of specific tissue-derived hMSCs for the treatment of neuro-
degenerative diseases. As the variation between hMSCs
derived from different tissues may result in heterogeneous
clinical outcomes, future studies should be performed to
determine the relevant hMSCs sources.

Enhancing clinical efficacy for hMSCs-based treatment
might also be achieved by extending hMSCs survival following
transplantation. hMSCs survival in the CNS following trans-
plantation was repeatedly reported to be limited up to sev-
eral months in rodent models [18, 19, 33, 44, 74] with one
report indicating survival after 45 weeks [41] and some
reporting survival of only several days following transplanta-
tion [31, 43]. hMSCs survival following transplantation was
shown to be affected by several factors including an immune
response against the grafted cells [117], hypoxic/ischemic
stress [118] ,or by an oxidative environment in site of damage
[119]. Several methods, such as growth factor precondition-
ing, or pretreatment exposure to oxidative stress, were sug-
gested for enhancing hMSCs survival in vivo following
transplantation into the ischemic myocardium (reviewed in
ref. 120). However, the factors associated with hMSCs survival
in the CNS were not identified yet.

As described earlier, one promising mean of enhancing
the beneficial outcome of hMSCs-based therapy is by enhanc-
ing the mechanisms throughout which hMSCs function was
exerted. This was demonstrated through ex vivo differentia-
tion or by genetically engineering of hMSCs to enhance NTFs
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or immunomodulatory molecules expression. Similarly, hMSCs
were suggested as a system to deliver shRNA into lesion area.
Olson et al. have shown that hMSCs transduced to express
shRNA against the huntingtin gene were able to reduce its
expression in coculture neurons [121].

Finally, a potential clinical benefit is expected from the
combination of hMSCs-based therapy with other novel thera-
peutic agents. To date, several compounds have shown a syn-
ergistic effect upon combined treatment with hMSCs in
models of stroke and dementia [122-125] and combined
transplantation of multiple cell-type is clinically examined in
patients with stroke [126, 127].

CONCLUSION

Upon transplantation into rodent models as well as patients
with neurodegenerative diseases, hMSCs are repeatedly
reported to home toward lesion sites and secrete a broad
range of molecules that modulate various aspects of diseases.
Initially, hMSCs broad differentiation capacity was intended to
be used for the derivation of neurons for cell regeneration of
damaged tissue. However, limited efficacy for the derivation
of neuronal cell types using this approach has motivated the
use of hMSCs differentiation capacity for the establishment of
supportive cells providing neuroprotection for damaged tissue.

This concept is well demonstrated by our group’s reports on
the beneficial effect of NTF-secreting hMSCs in various models
of neurodegeneration as well as in ALS patients. As different
neurodegenerative diseases entail abnormalities in various
molecular pathways and different cell types, it is expected
that the trophic array of molecules essential to support neu-
ronal and glial function may vary as well. While many favor-
able factors affecting substantial properties of disease have
been identified, the potential of this approach is only begin-
ning to unravel, as clinical trials using these cells meet safety
criteria. We envisage that the use of hMSCs as vehicles for
delivery of therapeutics into lesion area will provide an effi-
cient platform for targeted therapy in various neurodegenera-
tive diseases. Therefore, it seems promising that hMSCs will
serve as efficient tools for neurodegenerative disease therapy
in the future.
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